Artificial neural networks distinguish among subtypes of neoplastic colorectal lesions.

نویسندگان

  • Florin M Selaru
  • Yan Xu
  • Jing Yin
  • Tong Zou
  • Thomas C Liu
  • Yuriko Mori
  • John M Abraham
  • Fumiaki Sato
  • Suna Wang
  • Charlie Twigg
  • Andreea Olaru
  • Valentina Shustova
  • Anatoly Leytin
  • Prodromos Hytiroglou
  • David Shibata
  • Noam Harpaz
  • Stephen J Meltzer
چکیده

BACKGROUND & AIMS There is a subtle distinction between sporadic colorectal adenomas and cancers (SAC) and inflammatory bowel disease (IBD)-associated dysplasias and cancers. However, this distinction is clinically important because sporadic adenomas are usually managed by polypectomy alone, whereas IBD-related high-grade dysplasias mandate subtotal colectomy. The current study evaluated the ability of artificial neural networks (ANNs) based on complementary DNA (cDNA) microarray data to discriminate between these 2 types of colorectal lesions. METHODS We hybridized cDNA microarrays, each containing 8064 cDNA clones, to RNAs derived from 39 colorectal neoplastic specimens. Hierarchical clustering was performed, and an ANN was constructed and trained on a set of 5 IBD-related dysplasia or cancer (IBDNs) and 22 SACs. RESULTS Hierarchical clustering based on all 8064 clones failed to correctly categorize the SACs and IBDNs. However, the ANN correctly diagnosed 12 of 12 blinded samples in a test set (3 IBDNs and 9 SACs). Furthermore, using an iterative process based on the computer programs GeneFinder, Cluster, and MATLAB, we reduced the number of clones used for diagnosis from 8064 to 97. Even with this reduced clone set, the ANN retained its capacity for correct diagnosis. Moreover, cluster analysis performed with these 97 clones now separated the 2 types of lesions. CONCLUSIONS Our results suggest that ANNs have the potential to discriminate among subtly different clinical entities, such as IBDNs and SACs, as well as to identify gene subsets having the power to make these diagnostic distinctions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective Feature Selection for Pre-Cancerous Cervix Lesions Using Artificial Neural Networks

Since most common form of cervical cancer starts with pre-cancerous changes, a flawless detection of these changes becomes an important issue to prevent and treat the cervix cancer. There are 2 ways to stop this disease from developing. One way is to find and treat pre-cancers before they become true cancers, and the other is to prevent the pre-cancers in the first place. The presented approach...

متن کامل

Classification of Iranian traditional musical modes (DASTGÄH) with artificial neural network

The concept of Iranian traditional musical modes, namely DASTGÄH, is the basis for the traditional music system. The concept introduces seven DASTGÄHs. It is not an easy process to distinguish these modes and such practice is commonly performed by an experienced person in this field. Apparently, applying artificial intelligence to do such classification requires a combination of the basic infor...

متن کامل

Flood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique

Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...

متن کامل

Using Artificial Neural Networks to Predict Rolling Force and Real Exit Thickness of Steel Strips

There is a complicated relation between cold flat rolling parameters such as effective input parameters of cold rolling, output cold rolling force and exit thickness of strips. In many mathematical models, the effect of some cold rolling parameters has been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips, the ...

متن کامل

Using Artificial Neural Networks to Predict Rolling Force and Real Exit Thickness of Steel Strips

There is a complicated relation between cold flat rolling parameters such as effective input parameters of cold rolling, output cold rolling force and exit thickness of strips. In many mathematical models, the effect of some cold rolling parameters has been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Gastroenterology

دوره 122 3  شماره 

صفحات  -

تاریخ انتشار 2002